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A class of nonlinear hydrodynamic problems is studied. Physical problems such as 
shear flow, flow with a sharp interface separating two fluids of different density and 
flow in a porous medium all belong to this class. Owing to the density difference across 
the interface, vorticity is generated along it by the interaction between the gravita- 
tional pressure gradient and the density gradient, and the motion consists of essentially 
two processes: the creation of a vortex sheet and the subsequent mutual induction of 
different portions of this sheet. 

Two numerical methods are investigated. One is based upon the well-known Green’s 
function method, which is a Lagrangian method using the Biot-Savart law, while 
the other is the vortex-in-cell (VIC) method, which is a Lagrangian-Eulerian method. 
Both methods treat the interface as sharp and represent it by a distribution of point 
vortices. The VIC method applies the FFT (fast Fourier transform) to solve the stream- 
function/vorticity equation on an Eulerian grid, and computational efficiency is 
further improved by using the reality properties of the physical variables. 

Four specific problems are investigated numerically in this paper. They are: the 
Rayleigh-Taylor instability, the Saffman-Taylor instability, transport of aircraft 
trailing vortices in a wind shear, and the gravity current. All four problems are solved 
using the VIC method and the results agree well with results obtained by previous 
investigators. The first two problems, the Rayleigh-Taylor instability and the Saffman- 
Taylor instability, are also solved by the Green’s function method. Comparisons of 
results obtained by the two methods show good agreement, but, owing to its com- 
putational economy, the VIC method is concluded to be t.he better method for 
treating the class of hydrodynamic problems considered here. 

1. Introduction 
The formation of ring or line-pair vortices following injection of a blob of fluid into 

a medium at rest is a very common phenomenon. Some well-known examples include 
the classic ‘smoke ring’ and its two-dimensional analogue in aircraft wakes. When a 
spherical volume of air is heated at constant pressure as a result of a point release of 
energy, the hot bubble of gas rises and is typically observed to develop into a toroidal 
ring-vortex configuration by the time it has risen a distance of the order of its initial 
diameter. The two-dimensional analogue of this axisymmetric motion can occasionally 
be observed in bent-over chimney plumes, where the hot gas emanating from the chim- 
ney is stretched horizontally into a long cylinder by an ambient wind. When the air 
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is calm, this long cylinder of hot gas can be observed to develop into two parallel line 
vortices as it floats upwards. 

In  the case of smoke-ring ejection and the aircraft wake the initial motion consists 
of a distributed sheet of vorticity embedded in a hydrodynamically irrotational flow. 
The subsequent development of the motion in an incompressible fluid can be thought 
of as a mutual induction or interaction between the various sections of the vortex 
sheet. In  the two-dimensional case in the absence of viscosity, vorticity is a transfer- 
able quantity and no new vorticity is created during the ensuing motion. In  the case 
of buoyant motions (rising bubble, bent-over chimney plume), the initial state may 
be approximated as an irrotational one, with zero vorticity. The interaction between 
the gravitational pressure gradient and the density gradients provides a source of 
vorticity and the motion consists essentially of two processes: the creation of a vortex 
sheet or a vortex layer as a result of buoyancy and the subsequent mutual induction 
of different portions of this sheet. The induction phenomenon closely parallels the 
development in non-buoyant injection flows. In  the buoyant phenomena, the 
mechanics of the vorticity generation are essentially those that give rise to the 
well-known Rayleigh-Taylor instability. 

The motion of the vortex sheet in the ejection class of flows is closely related to the 
Kelvin-Helmholtz instability which occurs at the interface between two fluids in 
relative motion. In  this case the interface (vortex sheet) is unstable to the development 
of line vortices whose axes are perpendicular to the velocity-difference vector. In  the 
case of a wakelike flow, which can be approximated by two parallel vortex sheets of 
opposite sign, this instability results in the development of the well-known K&rmBn 
vortex street. 

There is another class of flows which, though not always resulting in vortex forma- 
tion, is quite similar in its hydrodynamics to the flows discussed above. These flows 
occur in porous media where the inertia forces are negligible compared with the 
viscous forces. Here the mechanisms driving the motion are again either the initial 
vorticity or the vorticity induced as a result of buoyant or pressure-gradient forces. 
Examples of this class of flows include the motion of a variable-density incompressible 
fluid through a porous medium under the influence of gravity or a pressure gradient. 
In  the case of a heavy liquid overlying a light liquid, the Rayleigh-Taylor mechanism 
is operative and the fluid will develop a motion commonly known as the Saffman- 
Taylor instability in a porous medium. 

In  this paper we consider a class of two-dimensional flows in the special case where 
the flow consists of two incompressible liquids of different density separated by a sharp 
interface with or without shear across it. The objective of this paper is to develop 
simple numerical treatments of this restrictive class in a fashion that makes clear the 
similarities and differences between the various phenomena. 

Major characteristics of this class of flows are that the flow equations are elliptic 
in nature and that there is a sharp interface. The former requires the entire flow field 
to  be calculated at  once; the latter necessitates proper removal of the mathematical 
singularity. These problems and the apparent nonlinearity have hindered effective 
numerical studies in the past. 

The crux of this paper is to demonstrate how those difficulties can be removed. One 
aspect of the success is realized by recognizing that, even though the flow equation is 
elliptic mathematically, physically the flow is dominated by the distributed vorticity 
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on the sharp interface. Therefore it is wasteful to compute the passive portion of the 
flow (away from the interface) which stays passive and irrotational. In  fact, it is 
advantageous to treat the problem from the point of view of the sharp interface since 
this reduces a two-dimensional plus time problem into a one-dimensional plus time 
problem, where the single dimension is along the interface. Another aspect of the 
success lies in removing the mathematical singularity. This is accomplished by either 
specifying a core radius for all the discrete vortex elements (Green’s function method) 
or computing the velocity on an Eulerian grid (the vortex-in-cell method). 

In the Green’s function method, one discretizes the interface and calculates the 
interactions among the discrete vortices. It is a precise simulation of a real problem 
and it is a limiting model for the sharp interface; however, the total number of opera- 
tions is proportional to N2, where N is the number of discrete vortices on t,he interface, 
which becomes costly as N increases. 

The alternative is to construct a numerical method capable of subgrid spatial 
resolution (sharp interface) which generates a solution independent of the core radius 
of the discrete vortex elements. Neither a pure Eulerian nor a pure Lagrangian method 
can be satisfactory, since the former cannot resolve the sharp interface and the latter 
generates meaningful solutions only when a non-zero vortex core radius is applied. 
A Lagrangian-Eulerian method is the only alternative. A vortex-in-cell (VIC) method 
is therefore developed here in which one discretizes the interface into discrete vortex 
elements with zero core radius, but calculates the velocity field from the vorticity 
stream function on an Eulerian grid. Since the stream function is independent of the 
vortex core radius, the mathematical singularity inherent in the Green’s function 
method is avoided. On the other hand, the density or the vorticity field is calculated 
in a Lagrangian fashion from the discrete vortex elements so that the sharp interface is 
preserved. The vorticity stream function is found by the fast Fourier transform (FFT) 
method, which also uses the reality of the physical variables. Computational economy 
is achieved both because of this and because the number of operations in the FFT is 
proportional to M, M, In (M,  Mu), where M, and M, are the numbers of mesh points in 
the x and y directions, which are independent of the total number of discrete vortices N .  
Therefore the VIC method can treat a problem with a sharp interface using a very 
large number of vortices without increasing the computational effort, which is not 
possible by the Green’s function method. 

In Q 2, the rate of change of the circulation carried by each discrete vortex element 
will be derived for both inviscid fluid and viscous fluid in a porous medium. Section 3 
describes the numerical aspects of both Green’s function and VIC methods. Section 4 
discusses the numerical results obtained for various physical problems. 

2. Formulation of the problem 
In the present analysis we shall be concerned with fluids where the fractional varia- 

tions of the density and viscosity are small ( A p / p , A v / v  1) .  Some aspects of the 
large density difference across the interface with the consideration of surface-tension 
effects will be discussed in the future. 

2.1. Inviscid fluids 

For inviscid fluids the vorticity equation takes the form 

ds2/dt = - vp-1 x vp (1) 
15-2 
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and to first order in the density difference (since V p  = pog + O(Ap/p,)  and if g is in 
the - y direction 

For two-dimensional motion in the x, y plane, the vorticity is effectively a scalar (i.e. 
has only a z component along nz). Of particular interest is the case of two uniform 
immiscible fluids of slightly differing density. In  this case, vorticity is generated only 
a t  the interface between the two fluids; the remainder of the flow remains irrotational. 

ri = I ai ax' dy' 
The total circulation 

of a given (it'h) fluid element is determined by 

d r i p  = 9PU1(P--P,) AY,% Po = +(P++P-), (3) 

wherep, andp- are the densities to the right and left of the interface, Ayi is the vertical 
dimension of the fluid element and nz is a unit vector perpendicular to the plane of 
motion. 

A convenient numerical analysis of the evolution of the fluid motion can be obtained 
by dividing up the interface into a number of discrete vortex elements and approxi- 
mating the circulation of each element as being concentrated into a line vortex having 
circulation ri. The quantity Ayi is then to be interpreted as the vertical separation 
between adjacent vortices. The evaluation of the Auid motion then reduces to the 
problem of following the motion of the individual discrete vortices. The velocity of 
the ith vortex is a sum over contributions from all other vortices: 

This equation of motion, plus the relation determining the circulation growth rate 
[equation (3)], in which Ayi is replaced by * ( Y , + ~  - yi- l ) ,  yields a direct deterministic 
procedure for following the motion; this is termed the Green's function method. 

Instead of the Green's function form for the velocity field, the velocity may be 
expressed in terms of a stream function Y defined on an Eulerian grid, 

u = V x Y ,  (6) 

with Y defined such that V.Y = 0 (the vanishing of V.Y is automatic in two- 
dimensional motion). The stream function satisfies a Poisson equation with the vor- 
ticity as the source function: 

V2Y = -a. (6) 

Equations (3), (5) and (6) form another deterministic procedure for following the 
motions; this is called the vortex-in-cell (VIC) method. 

2.2. Viscous flows i n  a porous medium 

When the viscous forces dominate the inertial forces, and for the flow of a fluid between 
two parallel plates, the flow is locally Poiseuille-like and the viscous term is dominated 
by the curvature of the velocity profile in the direction normal to the plates, so that 
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V2u Y - 8u/d2, where d is the plate separation and u is the centre-line velocity. We 
then have the following momentum equation: 

u = --vp+-g. d2 d2 

8pu 8v 

Taking the curl of (7),  we obtain for the vorticity 

c = ~ [ - v ( ; ) x V p + v  (3 - x g .  I 

(7 )  

To first order in the density and viscosity variations, Vp may be replaced by Vp,, 
where Vp,  = - 8po vo/d2U, +po g, and 

For two uniform fluids separated by a sharp interface, and if the vectors U, and 8 
are in the same direction, the total circulation ri of a given (ith) fluid element can 
be determined from 

ri= P+ -P- [ ( ~ ) u o - ( ~ ) ] q * Y i ,  P+-P- d2g 

where plt = (pu)* are the viscosities of the fluids to the right and left of the interface 
respectively . 

Equations (10) and (4) form a deterministic procedure for following the motion; 
this is the Green’s function method for the porous medium. Equations (lo), ( 5 )  and (6) 
form the other procedure, namely- the VIC method for a porous medium. 

2.3. Non-dimensionalization of the equations 

Equations of motion for both inviscid and viscous fluids in a porous medium will be 
made dimensionless in this section. 

When there is no stratification, (4) is reduced to dimensionless form by introducing 
the following characteristic dimensions. 

Length: R = a representative length, initial cylinder radius or wavelength. 

Time : T = 2 n R 2 / r O .  

Circulation: Po = total circulation assumed to be distributed on the interface or the 

When there is density variation, ( 3 )  and (4) are reduced to dimensionless form by 
introducing the following characteristic dimensions. 

vortex sheet. 

Length: R = the initial cylinder radius or wavelength. 

Time: T = [g(AP/Po)/27m-).  

Circulation: ro = [2ng(Ap/p0) R3]4. 
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I n  terms of the dimensionless distances = x / R  and 7 = y/R, the dimensionless time 
7 = t /T  and the dimensionless circulation y = I'/l?,,, the equations of motion become 

dyi/dT = Aqi, (11) 

(12) 

(13) 

N 
- = -  "i c y j ( v j -T i ) / [ ( t j - t i )2+  ( T j - q i ~ ~ ,  
dT j * i  

d7ild.r = C ~ j ( t j - t i ) / [ ( t j -  & I 2  + ( ~ j - ~ i ) ~ ] ,  

A% = +(Ti,, - Ti-1). 

N 

j+i  
where 

For viscous fluids in a porous medium (11)  is replaced by the non-dimensional 

Length: 

Time : T = 2mR2/r0. 

version of (10). I n  this case, the following characteristic dimensions are defined. 

R = the initial cylinder radius or wavelength. 

Circulation: ro = - Uo - - - (2 ::p. 
I n  terms of the dimensionless distances E = x/R and 7 = y/R, the dimensionless time 
T = t /T  and the dimensionless circulation y = I'/r0, the equations of motion (4) and 
( 1  0) for the viscous flow in a porous medium become 

yi = A.rIj.7 (14) 
N 

- = -  dti C ~ j ( ~ j - T i ) / [ ( t ~ - t ~ ) 2 + ( T j - T i ) ~ l  [equation (1211, d~ j+ i  

d7 j + i  

N 
dTi -- - c Y j ( 5 j - ~ i ) i r ( ~ j - 5 i ) 2 f ( T i - - r l i ) 2 ~  requation (13)1, 

where 

Equations ( 1  2) and (1  3) are repeated here for clarity. 
Equations (1  I ) ,  (12) and (1  3) form the deterministic set for the inviscid case, while 

(14), (12) and (13) form the equivalent set for the viscous flow in a porous medium. 
This completes the formulation of both cases in terms of the Green's function method. 

Similar non-dimensionalizations can be carried out for the stream function 
@ = Yr/l?,, for the VIC method and will not be described in detail here. 

ATi = m+1- Ti-1)- 

3. Some aspects of the numerical methods 
3.1. Description of the Green's function method 

Formulation of theJinite core radius. It was pointed out by Chorin & Bernard (1973) 
that, unless a finite core radius is used, the accuracy of the discrete vortex element 
method does not improve with an increment of the total number of vortex elements. 
The finite core radius is employed here by using an  algebraic relation which 
not only satisfies the physical smoothing requirement, but also eliminates the test 
procedure to  find out whether the point of concern falls within the core radius or not. 

The denominator in the velocity relation (4) is modified by replacing Ir, - rj12 by 
Iri - rjI2 + r:, where r, is the core radius. For Jr, - r jJ  < r,, therefore, in the core, the 
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velocity grows linearly with respect to the distance I ri - rj 1, and falls off as 1 / I  ri - ri( 
if Ir, - ril % rc. In  an accurate simulation of a physical phenomenon, the value of r, 
should be matched to experimental data, however the solution should not depend 
critically upon the arbitrary choice of a non-zero re value (Chorin & Bernard 1973). For 
all the calculations reported here, we set re = R / N ,  where N is the total number of 
discrete vortex elements on the interface. 

Repacking the vortices. One problem which is commonly associated with a Lagrangian 
calculation is the continual addition or removal of particles from the calculation. 
Depending upon the physical nature of the problem, particles may become crowded 
and yield unrealistically high gradients of flow variables or the number of particles in 
a region of interest may be so low that no realistic representation of flow is possible. 
From the point of view of maintaining a uniform accuracy, a procedure which can 
rearrange, add or delete particles as necessary must be applied. It is also desirable 
from an economic point of view since a number larger than a limiting number of 
vortices will not improve accuracy, but a number smaller than a limiting number 
of vortices will reduce accuracy. Without being committed to using a large number of 
vortices throughout the computation, there is no alternative but to adopt a repacking 
procedure. Since the vortices do carry physical variables (vorticity ) the repacking 
procedure must be based upon the laws of conservation. For the present calculation, 
these are the vorticity and the centroid of the vorticity. 

The method adopted here is to add or delete a vortex element when the separation 
distance between neighbouring vortices exceeds or falls below a preset limit, then 
redistribute the vorticity among the added and the original vortices to satisfy the 
conservation laws. To be specific, assume that between the ith and ( i  + 1)th vortices 
one vortex is added. The circulation of the new vortex will be $(I?, + I’i+l) and the 
circulation of the original particles is reduced to +Pi and +I’i+l, accordingly. The new 
vortex position is determined by a linear relation which keeps the centroid of the 
vorticity unchanged. 

Another method, although it has not been applied in the present calculations, is to 
impose an equal separation distance between the vortices at  all times. This separation 
distance can either be constant or vary as a function of time. Then the vortices are 
rearranged accordingly, and the physical variables, circulation and spatial positions 
are interpolated using a cubic spline interpolation polynomial over all the vortices. 
Through numerical experiments which were discussed in Meng (1977), it is evident 
that this repacking procedure is more effective in removing ‘spurious ’ numerical 
errors. The reason for the success with an equal separation distance between the 
discrete vortex elements is explained in Fink (1973). 

3.2. Description of the VIC method 

Several numerical procedures required in the application of the VIC method will be 
described below. Owing to the possible broad numerical aspect of each procedure, 
we shall concentrate on description of the actual procedures applied. 

Bilinear interpolation. As is true for all Lagrangian-Eulerian methods, an inter- 
polation method must be applied back and forth between the Lagrangian particles 
and the fixed Eulerian grids. In  the VIC method, we have applied the bilinear inter- 
polation method. 
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Xpreading. One characteristic length in the VIC method is the cell size for the FFT 
method. When the circulation carried by the vortices is spread over a rectangle 
instead of the infinitesimal area covered by a point, additional dimensions are intro- 
duced. This will alleviate the singularity associated with the particle representation. 
Consider the three distributions shown (with their Fourier transforms) in figure 1 ( a ) :  
the top one is a step function with narrow width and its Fourier transform will produce 
noise of very high frequency; for the second distribution, less noise is produced at high 
frequency as a result of spreading the quantity linearly; in the last case, which is the 
best representation, no noise is generated at  high frequency. We have adopted here a 
distribution similar to the last case; figure 1 (b) illustrates the relationship between the 
mesh, identified by indices I and J ,  and the Zth particle, located at [X(l), Y(l ) ] .  We 
spread the vorticity over a rectangle with the dimensions Ax and Ay of one cell, and 
make sure that there is approximately one particle per cell throughout the computa- 
tion, and assume a vorticity distribution according to 

w+ [ ( ~ - X ( 4 ) / A z I 2 H 1  + [(Y - Y(~) ) /AuIZ~ ,  

where A, = +Ax and Au = &Ay are the half-widths characterizing the spreading. Then 
the weighting factors are obtained by integrating the above relation over the over- 
lapping area in each cell. The spreading of the physical quantities according to the 
above relation was found to be effective in removing irregular motion of the vortices. 
The effect is similar to that of the finite core radiusused in the Green’s function method, 
since it introduces a mesh-independent length scale over which one can distribute the 
vorticity arbitrarily. This greatly enhances the capability of the VIC method to deal 
with flows with high gradients. 

Use of the reality of the physical variables. Since all physical variables in the problem 
are real, their Fourier components should satisfy the relation 

Y*(k) = Y( - k),  
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where the asterisk represents complex conjugation. This property has been fully used 
in the VIC method by calculating the first half of the Fourier components, i.e. Y ( k , ,  k,) 
for k, 2 0 ,  only. The second half of the Fourier components, i.e. that for k ,  < 0,  is 
obtained by complex conjugation. That is, letting k, > 0,  we have 

The Fourier components of u = V x Y, or u(k) = -ik x Y(k), where Y = ( O , O , Y ) :  are 
obtained similarly. For example, the Fourier components of the horizontal velocity are 

U(k,, k,) = - i k ,  Y ( k , ,  k , ) ,  U (  - k,, k y )  = - i k ,  Y * ( k , ,  - k,) .  

Imposition of periodic boundary conditions. The efficiency of the FFT is achieved 
with a periodic boundary condition. The domain dimensions are taken to be periodic 
lengths so that images exist one periodic length apart even though they are not visible 
in the computational domain. This also implies that, when a vortex is swept out of 
the flow domain a t  one side, another vortex must be introduced into the flow domain 
a distance of one periodic length away from the original position. To make certain that 
the image exerts no significant influence upon the flow, this in general requires the 
region of interest to  be centred in the computational domain. 

Dumping. All physical problems treated by the VIC method are basically unstable, 
i.e. amplification of small perturbations (or numerical errors) always occurs. It is 
necessary to  eliminate errors generated by the numerical procedure in order to obtain 
a smooth solution. One of the error sources is the finite mode Fourier transform; 
this error is known as aliasing error and was discussed in detail by Cooley & Tukey 
(4965). Since the mesh size (Ax, A y )  set the highest wavenumber representable by the 
Fourier series, all high wavenumber components must stay small throughout t,he 
calculation. This is achieved conveniently through a damping procedure in the Fourier 
space. We have applied the damping function 

and found p = 2 sufficient in very unstable flows. However, its effect on the conserva- 
tion of circulation or momentum has not been investigated. 

4. Numerical computations by the discrete vortex methods 
Vortex consideration furnishes a powerful ally in attacking many nonlinear rota- 

tional hydrodynamic flows. I n  this context, we shall establish the accuracy and 
efficiency of such a numerical approach by emphasizing the manner in which motion 
is generated by the vorticity and how the subsequent evolution develops. 

4.1. Rise of a buoyant cylinder (Rayleigh-Taylor instability) 

Scorer (1958, p. 194) suggested that the behaviour of plumes of smoke which have 
been bent over by a crosswind and become nearly horizontal can conveniently be 
discussed in t,erms of a line source of buoyancy. Turner (1  959) studied t~his in a water 
channel and observed that plumes bent over in this way tend to  split sideways into 
two concentrated regions with a clear space between them. He found that the flow 
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I I I 1 I I I I I  

FIQURE 2. Rise of a buoyant cylinder. (a)-(d) Results of the Green’s function method with 61 
vortices on the right-hand semicircle. (e)-(h) Results of the VIC method with 200 vortices on the 
right-hand semicircle. Non-dimensionalized time (defined in 52.3): (a ) ,  ( e )  0; ( b ) ,  (f) 0.72; ( c ) ,  (9)  
1.00; ( e ) ,  (h) 1.56. 

in planes perpendicular to the axis of the plume is very like that in a vortex pair, with 
a region of fast rise in the centre and slower regions on each side. 

Equations (1 1)-( 13) have been used to calculate the time-dependent motion in two 
dimensions following the release of an initially uniform circular cylinder of light fluid 
in a homogeneous heavier fluid. Since the density gradients in this example are con- 
fined to the (deforming) surface of the cylinder, the motion may be traced by following 
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the history of the vortex sheet which comprises the cylinder boundary initially (see 
figure 2a). The results of the calculation are shown in figures 2(a)-(d). The cylinder 
boundary a t  time zero was divided uniformly into N discrete vortices (61 on the 
semicircle). The velocity of each point was calculated at successive time increments 
according to (12) and ( 1  3).  The circulation of each point was calculated from (1  1 )  as 
a function of time, the initial values being taken equal to zero. 

The initial motion of the cylinder is simply an upward displacement without sensible 
distortion. By the time the net displacement is of the order of one half of the initial 
cylinder radius, the beginning of vortex development is evident (figure 2 b ) .  The vortex 
appears to be well developed by the time the buoyant region has risen about one 
diameter (figure 2c) .  By this time, most of the vorticity is concentrated in the vortex 
region. The rate of change of the total circulation of this region is obtained by summing 
(1 1 )  over the entire vortex sheet: 

where 8~ is the thickness of the cap on the axis of symmetry. Thus the value of the 
vortex circulation grows during the vortex development but saturates when the vortex 
has developed fully. The subsequent motion (after vortex formation) of the buoyant 
and entrained material has been discussed by others (particularly by Turner 1959; also 
by Fohl 1967). It is important to point out here that the vortex interaction process is 
responsible for the flow entrainment, not turbulence; the basic motion is an inviscid 
rotational flow, not necessarily a turbulent motion. Although the present calculation 
was carried out for a cylindrical configuration, essentially similar results can be 
anticipated for a spherical configuration. 

When the cylinder (see figure 2d)  has risen more than one diameter, the set of 
point vortices forms: an irregular distribution within a finite cloud. The original vortex 
sheet is now so convoluted as to be impossible to follow. Although the numerical model 
cannot be a good model of the small-scale structure a t  such times, it is important to 
understand whether the large-scale motion agrees with theoretical analysis. 

Turner (1959) has shown that the circulation of each vortex approaches a constant 
value after vortex formation. This may be seen from Kelvin's theorem, which states 
that, for any closed circuit display C, 

dI'/dt = ( l / p ) V p . d s .  

After vortex formation, the density along a path threading the centre of the vortex is 
essentially constant and equal to the ambient value, and d r / d t  -+ 0. When I' is constant, 
the rise velocity varies inversely as the separation of the vortex pair: V cc 1/R. The 
upward momentum increases a t  a constant rate d(MV)/d t  = FB, where FB is the 
(constant) buoyant force and M is total mass in the vortex. Since M is proportional 
to  R2 in two dimensions and RV is constant, the separation R increases linearly with 
time: R - t. Since the rise velocity of the vortex pair varies as FIR, the net rise distance 
y increases logarithmically (in two dimensions) with time: y - lnt. I n  figure 3 we 
show that the time dependence of the width and height of the rising vortex pair agrees 
well with the expected dependence. 

In three dimensions the expansion rate will have a different time dependence. Since 
here the mass varies as R3, the momentum equation reduces to dR2/dt - constant 

C 
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FIGURE 3. Width and height of a buoyant cylinder vs. time. 

after torus formation (when RV N constant). Here R N ti and dz/dt N t-4. Thus the 
radius of the torus increases linearly with height (R N z) .  

If the vortex-in-cell (VIC) method is applied to solve the problem, a vortex system 
of much larger numbers of particles can be employed, taking essentially the same 
amount of computation time. For example, in the Green’s function approach, using 
61 vortices took 0-246 s per time step. The VIC method took 0.426 s per step, with 
591 vortices, while the same approach took 0.31 s per step with only 41 vortices. All 
calculations were performed on a CDC 7600. Figures 2 ( e ) - (h )  show the results obtained 
by the VIC method using 200 vortices over the same period as that in figures 2 (a)-(d). 

Comparing figures 2 (a)-(d) with figures 2(e)-(h) shows that the large-scale motion is 
reproduced closely by the VIC method. The small-scale motion generated by the 
Green’s function method, however, cannot be reproduced by the VIC method owing 
to the finite mode Fourier transform. Therefore this indicates that no advantage can be 
realized by using the VIC method in a numerical calculation where no more than 
50-100 discrete vortices are required to resolve the flow motion. 

4.2. Saffman-Taylor instability 

Long narrow convecting cells, i.e. ‘salt fingers’, are commonly observed when hot salt 
water is poured over cold fresh water. A very similar rhenomenon occurs at the inter- 
face of two superposed viscous fluids when they are forced by gravity or an imposed 
pressure gradient through a porous medium. Practical examples, in addition to those 
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already mentioned in the introduction, are an oillwater interface in sand or in shale, 
and a fresh-airlsmoke interface in a peat moss or a granular coal bed fire. As is illus- 
trated by the general equation (lo),  such a situation involves two diffusive gradients, 
and the corresponding flow system is called a doubly diffusive system. 

To illustrate how the Saffman-Taylor instability evolves in reality, results of two 
numerical simulations, using the Green’s function and the VIC method, are shown in 

FIGURE 4. Saffman-Taylor instability. (a)-(e) Results of Green’s function method. (f)-(j) Results 
of VIC method. Non-dimensionalized time (defined in $2.3): (a ) ,  (f) 0; ( b ) ,  (9 )  0-22; ( c ) ,  (h) 0.38; 
(d) 0.68; (i) 0.60; ( e ) ,  ( j )  0.98. 
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figures 4 (a)-(e) and 4 (f )-(j) respectively. An interface in a porous medium separating 
two fluids of different density, kinematic viscosity or both is perturbed by a Gaussian 
displacement profile at  the centre (figures 4a, f ). Forty-one and 281 vortices, respec- 
tively, were used on the right half-plane to represent the interface. Figures 4 ( b )  and (9) 
show that the centre has risen while the outer edges are depressed. Figures 4 ( c )  and ( d ) ,  
and (h)  and (i) show the continual rise of the centre and fall of the outer edges. 
Figure 4(c) also shows that as the finger grows the spacing between vortices on the 
top becomes large, so that unless a method by which vortices can be added to this 
region is implemented one cannot obtain good resolution there. Notice that, in 
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figure 4 ( d )  at 7 = 0.68, one vortex has been added to the centre region as a result of the 
repacking procedure explained in 5 3.1. Development of smaller-scale ‘fingers ’ can be 
seen in both figure 4 ( e )  and figure 4 (j), near and behind the advancing main ‘fingers ’. 
Its physical origin, however, hasnot beeninvestigated. Saffman &Taylor (1  958) studied 
the fingerlike structure in a Hele Shaw cell and found that the ratio of the width of 
the fingers to their spacing is almost always equal to 4, which is also demonstrated by 
figures 4 ( e )  and (j). The total number of vortices at  7 = 0.98 in figures 4 ( e )  and (j) are 
146 and 21 8 respectively. In  summary, both methods yield similar large-scale results 
at 7 = 0.98, although at  this time an image effect is seen in figure 4 (j). The difference 
in the small-scale result is attributed to the difference between the core radius rc = 0.05 
for the Green’s function and the zero core radius and finite mesh size Ax, Ay  = 0.125 
and Mz = M, = 32 for the VIC method. Further continuation of numerical calculation 
by either method is not warranted since it becomes costly for the Green’s function 
method ( N  = 146 at 7 = 0.98) and a more significant image effect will be apparent for 
the VIC method. 

Although numerical simulation of this problem on a quantitative basis has not been 
obtained, a qualitative understanding of the physical phenomenon can be derived from 
the numerical result. For simplicity, let us assume Ap = 0, so that the flow is charac- 
terized by two quantities: the acceleration gAp/p and the viscous stress operative 
in a porous medium with porosity K = +d2. A balance between the gravitational force 
and the viscous force will lead to an equilibrium state where a terminal velocity ut 
exists. We shall estimate ut and the final interface configuration at  the equilibrium 
stage. 

First, suppose that the finger is replaced by a sphere of Auid accelerated under the 
effective gravitational force gAp/p and decelerated by the viscous force vV2u N vut/K 
times the surface area of the sphere. Then one finds ut z Q ( A p / p ) ( ~ / v ) .  

Recond, from figure 5 ,  one finds that the vorticity generated is that due to the 
terms (Ic/v) (Vplp,) x g only, i.e. the vorticity is a maximum where ap/ax is a maximum. 
The resultant motion will be to lift up the centre and push down the edges. At  some 
later time, as is shown in figure 5 ( b ) ,  vorticity of the opposite sign also appears, but the 
resultant motion is a further acceleration in the same direction as in the initial stage. 
Assuming that the final stage of the finger structure is that depicted in figures 4 ( e )  and 
5 ( c ) ,  we can estimate the velocity at the centre fingertip owing to the vortices distri- 
buted on the long vertical interface. Let I be its length and F, its width; we find 

“ “ 2 y  dr N-- 2K 9’‘ In (i) . 
7T 0 (z2+y2)& p 

Identifying this relation with that obtained by the first method, one finds 1 z 8h, 
which is in agreement with the numerical results shown in figures 4 ( e )  and (j). 

4.3. Transport of aircraft trailing vortices in a wind shear 

The limitation on any numerical scheme for studying this problem is its small time 
step. This time is determined by the peak angular velocity around the trailing vortices. 
Since angular velocities exceeding 10radls are expected in practical cases, the time 
step required to follow this motion would be substantially less than 0.1 s. To cover an 
elapsed time of 100 s requires more than 1000 steps. This is excessive, and it is desirable 
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to obtain a numerical scheme that can handle a large number of discrete vortices 
without the limitations of a small integration time step. 

There is another reason why a pure VIC method will not be adequate. In order to 
resolve a trailing-vortex flow field that has a core radius of a few metres, one must have 
a mesh smaller than the core radius. On the other hand, one must cover an overall 
distance determined by the product of the wind speed and the total elapsed time of 
interest (several hundred metres). The ratio of this dimension to the core radius indi- 
cates that at  least 100 mesh points in each direction are required to resolve the flow 
field; this is large even for the CDC 7600 computer. To achieve an economical and 
accurate computation, we introduce a hybrid method that is capable of resolving the 
fine structure near the trailing vortices while maintaining a relatively coarse mesh. 

We use the fact that the vortex sheet quickly turns into two (or more) well-defined 
localized structures which maintain their identity (trailing vortices) for many rotations. 
The total velocity field is taken to be a superposition of two parts: one the contribution 
of the localized trailing vortices and the other due to the distributed vorticity (wind- 
shear vortices). The velocity field of the trailing vortex is constructed from an axi- 
symmetric model. This model in general requires values of two quantities to be speci- 
fied: the total vortex circulation r(t) and a characteristic radius rc (typically the core 
radius). Both I' and rc are functions of time. In  the present simulation we use the model 
constructed by Owen (1970) for a turbulent vortex, in which rc = ( 2 / c ~ ) ( v t ) *  and 
t~ = A-l(v/I'o)i, where v is the kinematic viscosity, I?, is the total circulation over one 
wing and A is a numerical constant of order unity (set equal to unity in the present 
simulation). A simple laminar diffusion profile is used for the radial distribution of 
circulation: r[l - exp ( -  r 2 / r 3 ] .  As the core expands, the distributed vortices are 
captured and incorporated into the tip vortices. The trailing-vortex locations are 
updated to the centroid of the original vorticity distribution in this capture process. 
The velocities due to the trailing vortices and the wind shear are then superposed. 

In  this paper we avoid the 'short time step' problem by superposing displacements 
rather than velocities. The angular displacements directly induced by the trailing 
vortices are evaluated. This displacement is then added to that due to the slowly 
varying background velocity field. By repeating this process at  each time step, one 
follows accurately the motion near the core even though a given point may rotate 
several times about the trailing vortex during one time step. This method is called the 
hybrid VIC method. 

By wing theory, the lift or wing loading is linearly proportional to the circulation 
about the wing cross-section, and it is well known that for simple wings of high aspect 
ratio the wing loading can be approximated by the elliptic curve 

where 8, is the maximum circulation at x = 0 and R is the wing span. The circulation 
between the points x and x + dx is decreased by the amount AS = S(x  + dx) - S(x )  and 
this amount of circulation must be shed from the wing section between these two 
points. Thus the circulation of the trailing vortex sheet at  any point x is equal to the 
rate of change of X(x),  i.e. -dS(x)/dx,  along the wing. 

To model this initial velocity field we divide the vortex sheet into a number of strips 
in the flight direction, each having a circulation r i ( x )  given by 

where Ax = xiil-xi. 

S(X)/fJ,  = El - (X/R)ZI*, 

r w  = [$(xi) - ~ ( x , , , ) i / ~ x ,  (15) 
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FIGURE 6. Transport of aircraft trailing vortices in a crosswind shear. Time: (a)  0; ( b )  7 s;  (c) 17 S ;  

(d)  27s; ( e )  3 7 s ;  (f) 47s. 0,  Wind-shear vortices; 0, vortices on trailing vortex sheet; m, ' t ip  
vortices'. 

The real lift distribution deviates considerably from the elliptic loading rule, as was 
pointed out by Donaldson, Snedeker & Sullivan (1973). Although the real profiles 
can be treated easily by the present model, we have applied the elliptic loading rule for 
its-simplicity . 

The wind profile near the ground in a neutrally stable atmosphere is known to 
exhibit a logarithmic dependence upon the height y (Blackdar & Tennekes 1968): 

K 

where u, is the friction velocity and is usually related to the wind velocity by u, E &U 
(at a standard height). The parameter K is the Karm&n constant (Hinze 1959, p. 619) 
and is equal to 0.42. The parameter yo is the roughness height. 

From the preceding equation the vertical wind shear can be obtained by taking the 
derivative with respect to y: 

To describe the mean wind-shear field, this circulation is assigned to a uniform distribu- 
tion of discrete vortices as follows: 

C(Y) = .,/.!I. 
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for layers above ground, where Ax and Ay are the horizontal and vertical mesh sizes 
and N is the total number of rows of vortices; N = 17 for this study. The present 
treatment is similar to that of Brashears & Hallock (1973) except for the number of 
wind-shear vortices used to simulate the wind-shear field and the VIC method. In  the 
present analysis, the use of the mixed Eulerian-Lagrangian (hybrid vortex-in-cell) 
method allows a highly detailed spatial resolution of the wind field a t  relatively modest 
cost. 

The trailing vortex shed from a Boeing 747 aircraft at  a height of 120 m above the 
runway was studied with a 32 x 32 grid. The trailing vortex was represented by 25 dis- 
crete vortices over half of the wing span, each being assigned a circulation according 
to  (15). The wind-shear vorticity [or circulation by (IS)] is assigned on 544 vortices 
(dots in figure 6) over the flow domain on a 17 x 32 mesh, and the images are obtained 
by the symmetry condition in the vertical direction. The buoyant engine exhaust can 
also be represented by 25 vortices, with a small temperature difference from the 
ambient air. However such an option was not used in this calculation. Figure 6(a)  
shows the initial geometry of a Boeing 747 trailing vortex sheet (open squares) and its 
buoyant exhaust. Figure 6 ( b )  shows the rolling up of the vortex sheet after 7 s, as some 
of the discrete vortices are captured by the trailing vortices (two solid squares). 
Figure 6 (c) shows the overall picture of the vortex system a t  t = 17  s : the wind-shear 
vortices near the ground, where the vorticity is maximum, are swept up and mutual 
induction between these wind-shear vortices and the localized tip vortices may be 
expected to emerge. Figure 6(d)  shows the skewed configuration due to the wind 
shear at t = 27 s. The trailing vortices have been transported nearly 170 m to the left 
from their original position, and the positions of the wind-shear vortices delineate the 
wind-shear profile. Figure 6 ( e )  shows the location of the vortices at  t = 37 s; the down- 
wind (left) vortex is observed to rise as a result of the interaction with the wind shear. 
The trajectories of the two trailing vortices are marked in figure 6 (f). A more detailed 
discussion of the problem is given by Thomson & Meng (1976). 

4.4. Gravity current 
We now turn to a phenomenon which is commonly treated as a hydraulic-jump 
problem rather than from the point of view of the vortex interactions. It corresponds 
to the intrusion of a heavier fluid (a front or 'nose') into a fluid of smaller density. 
Examples of this flow are found in the atmosphere: in a weather front (say, a sea 
breeze) and in front of a gravity current, which is usually termed a 'Sudanese haboob '. 
Examples in the ocean are the flow near a river-sea junction and the intrusion of salt 
water under fresh water when a lock gate is opened. Many experiments have been 
made to study this phenomenon. A summary can be found in Turner (1973, p. 71). 
Benjamin (1968) showed that the head of the front must be followed by a turbulent 
region and an abrupt drop to a layer of uniform depth. KBrmBn ( I  940) showed that the 
inclination of the nose (or head) a t  the front is 60" to the horizontal. 

I n  this study we shall resolve the nonlinearity of the problem from an idealized 
vorticity interaction point of view. An idealized weather front, or a mixed region of 
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FIGURE 7. Formation of a gravity current. Results obtained by VIC method with 171 vortices on 
the first quadrant. The left column shows evolution of the interface, the right the corresponding 
velocity distribution. Non-dimensionalized time (defined in 52.3): (a) 0; (b) 0.60; (c) 1.60; (d) 2-20. 
Maximum non-dimensionalized flow speed: (a) 0.120; (b)  1.638; (c) 2.169; ( d )  2-136. 

constant density (Wu 1969), is represented by a, circular cylinder of constant-density 
(p,) fluid lying on a stable density discontinuity, with densities po Ap above and 
below the interface. Vorticity generated along the interface and its self-interaction 
will dominate the subseqdent rotational motion. The VIC method, with 171 discrete 
vortices along the interface, will be applied since the Green's function method is not 
practical for such a large number of vortex elements. The evolution of the advancing 
head and its advancing speed will be analysed and compared with the theoretical 
analyses. 
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Figure 7(a) shows the initial geometry and its velocity-vector plot. A circular 
cylinder of fluid of intermediate density is located on a stably stratified density 
discontinuity. The dots show the location of the vortices: 171 points altogether, distri- 
buted non-uniformly over the first quadrant, with the higher number density near the 
interface (or the thermocline) and the smaller on the cylinder top. This was necessary 
to ensure a good resolution of the nose geometry. The vorticity was initially zero 
everywhere. Then (11)-(13) were applied to advance the calculation. Owing to the 
lower fluid density above the cylinder and the higher underneath, the buoyant force 
will flatten the cylinder; if there were no vorticity generated, the circular cylinder 
would simply be flattened into a thin layer. Owing to the vorticity generated by the 
density difference across the cylinder and the symmetry condition in the vertical 
direction, it forms a self-advancing vortex pair (see the vector plot in figure 7 a ) .  The 
nose is commonly known as the gravity current or weather front in meteorology. 
Notice that the maximum velocity at  T = 0 is 

0.12 ( g- 23" - 

Figure 7 ( b )  shows (for T = 0-6) the flattening cylinder and its velocity distribution. The 
velocity has grown to 

1.6 ( 9 - -  ;:;)* . 

Figure 7 (c) shows the nose shape at  T = 1.6. The nose has a slope with a half included 
angle of nearly 60" as was predicted by K&rm&n (1940). He also predicted that the 
nose's advancing velocity is bounded by 1/24 < v / [g (Ap/p )  HI4 < 24 if t,he ratio of 
the depth H of the intruding layer to the depth d of the overlying layer is bounded by 
4 2 H / d  2 0. Since H z R for the present calculation, one can estimate from the 
above relation that the maximum velocity (the velocity at  the nose) should be 
bounded bv 

which agrees with what is shown in the velocity-vector plots at T = 1.6 and 2.2. The 
solution a t  T = 2.2 is given in figure 7 (d ) ,  which shows a well-developed nose advancing 
at a constant meed 

x 2.1 (::)t 9 - -  . 

5. Conclusion 
We have shown that a special class of nonlinear hydrodynamic flows including 

a density interface can be studied by discrete vortex element methods. These numerical 
methods exploit the basic rotationality (which introduces the nonlinearity) of the 
physical problem and make possible a simple explanation of the observed phenomena. 
Application of this method to study many other practical problems is quite possible. 
Extensions of the basic approach to three space dimensions and a large density 
difference across the interface will be explored in the future. 
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